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3D printing has emerged as a promising technology for the production of personalized medicines, enabling freeform
design and on-demand manufacturing. Selective laser sintering (SLS) is a solvent-free powder bed fusion technique
capable of simultaneously fabricating dosage forms and inducing drug amorphization. However, the optimization of
printing parameters and the reuse of powder materials remain key challenges for pharmaceutical applications. In this
study, printlets containing either acetaminophen or indomethacin were fabricated using an SLS 3D printer with
Kollidon® VA64 as a thermoplastic polymeric excipient. The effects of SLS process parameters on printlet formability
and drug dissolution were evaluated. The results demonstrated that printing temperature strongly influenced
formability, with optimal values varying between formulations. Although the reuse of powder was not feasible due to
physicochemical changes in the drug upon heat exposure, high manufacturing efficiency was achieved by maximizing
the number of printlets produced per batch. Furthermore, indomethacin was successfully amorphized during the
printing process, leading to a marked improvement in its dissolution behavior. These findings suggest that SLS 3D
printing can serve as a one-step manufacturing platform for preparing amorphous solid dispersions and enabling
flexible design of dosage forms for poorly water-soluble drugs.

Keywords: Selective laser sintering, Pharmaceutical printlets, Powder properties, Amorphous solid dispersions,

Personalized medicine.
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BRI D Z b, 29 LIREROBRKIE R
2T R EZED S WL H IR Z 508, EBIZIE
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NTWwaH, REMEEOBE 2 SHAROHFHICHET
HHENZIEE A EITThRTWiw, 22T, AfEICE
Wi, EEREEA LZEEB RO BRI TR
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BIE#I & LTk, ¥ v¥n)) Ny Eov7k5—
MEEAMR (Kollidon® VA64, BASF ¥ ¥/ 8Y) %ML
7oo RRY 2 —R@ZEHER) 2 —THY, 7I Ak
I Tg [°C] (Glass transition temperature) {3 101°C & &
NTWB[31]e JEWIA & LCEf = @bk (RBE1L
W) L7z, EFTAVEYELTCTENTI ) 7Y
(IUALFETE) BLUOA Y FAY Yy CGREILKRTXE)
i AV

22 SLS AR 3D 7'V > 2 & B EeEIR

WHBEOREGIEVD, FEHEKEZ D S5 Lo
Lo 773/ 72 VIZBIOE 850 um D 5%\
%, A Y A%, Kollidon® VA64 (¥ =v¥al) K
SEZNVT 7 — MMYEAK, Tgx101°C) B L UO#HB=
TRRIESRIZ 500 um D 5BV EHWTERZENER L 720
FUFHEDNTER R R L, B X OskE
WCFRAETAZETH—LRABKERAR L 7T
7 X/ 7 x ¥/Kollidon® VA64 =5/94 B X U 10/89, £ ~ F
A & ¥ v /Kollidon® VA64 =20/79 (W hLd wiw) @ 37
HOWE L, ZNFN FA5, FA10, FI20 & L7z,
B, L=V —URIH & LT = R bk 2 B AL IS
1% L7z (Table 1) [27]o

ZHL) DFEHE T VIE, 3DCAD V7 7 =7 (Fusion
360, /N—3 3~ 2.0.18961, Autodesk) ZHWT, HEF
10 mm, JEA 3.6 mm OFFEIEIRE LTk L, STL B
TIIZAR—=bPLAF—=%%3D 7Y &I ZHk LCfl
M L7z (Fig. 1a),

ARFFECMH L7z SLS 5 3D 7Y ~ % (Sintratec Kit,
Sintratec AG, Fig. 1b) 1, B KA R, BHER, L—¥—
VATABIYN) 3= — (BHERATL v F—) THIK
INTWD (Fig 1c,d)o &IEHIATICFURMG K % 4
BWAHHE L, MASNAEEENTPRRL 2%, &EFE
N7z CAD F—# ISV T L —F = sh, BEK
J& IR L — S — 2 R4 95 2 & TR T 2 38R -
BAL (BERS) 872, 208, Va—F—12X ¥k
AR ZBEAERE LICHERE (Va—1b) L, ToTREL#
NE$Z & TERITWN R ERY 2T L72[27]. AHF%
Tix, W23 W - R 45moFayf+—FL—
P—ZEW L AREEBEZ T, 1Ny FH72 25 §ex ik
RELTTY MLy FEERLA (Fig la~c)o E£%
TR ARG A =%, EIRIEMNIRE ICT [°C] (Internal
Chamber Temperature), R K IMIRE PST [°C] (Powder

Table 1 Formulation composition of printlets containing 5% or 10%
acetaminophen or 20% indomethacin [w/w]

Formulation Kollidon® Acetamino- Indomethacin Yellow iron

Code  VA64[%] phen[%] [%] oxide [%]
FAS 94 5 — 1
FA10 89 10 — 1
FI20 79 — 20 1
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Fig. 1 Overview of the selective laser sintering (SLS) 3D printing system and process: (a) 3D CAD model of
the cylindrical printlet (diameter: 10 mm, thickness: 3.6 mm) designed using Fusion 360, (b) External
view of the SLS 3D printer (Sintratec Kit), (c) Internal view of the printer showing the powder spreader
and powder bed, and (d) Schematic illustration of the main process parameters, including laser scan
speed (LS), hatch spacing (HS), and layer height (LH)

Surface Temperature), L —H%—HiJJ P [W] (Laser Power),
L —¥ =B LS [mm/s] (Laser Scan Speed), K&
J& X LH [mm] (Layer Height), 3 & U~ F[#d HS [mm]
(Hatching Space) T#» 5 (Fig. 1d)o TN HDFEMHEIIHKD
& LUTOEQMIZED, B 1mm® H720 IS
HIANF—FOREL LTHET L —¥—% ELD
[/ mm?] (Electron Laser Density) % % H L 72[29].

ELD = P/(LS x LH x HS) (1

2.3 EFIMA DB AT

SRS R ORLFE AR 1E, L — — [l SOREE 754 0 52
B (LDSA-SPR 3500A, A4 270t Jvr - N, #
FUERHE 100 mm) ZFHWTHE Lz, BROGHUIZIZE
Kotk (PD-10S) % vy, Z25UE 2.0 kgflem? D44
T L 72,
WROTENERG & LT, MARREIPEST R (FT-4,
Malvern Panalytical) % FI\> CEIWFREN 4 AR (Dynamic
flow test) D 1 D TH B L EMERER (Stability test) % Fjifi
L7zo CORBTIE, MAEOREICLE R T AL F -2
HOE, BHOFMIEELE2 2 E25TE S, WEII,
BEE25mm OF I ARHBLOEZ 235 mm DAT VL
ATV — R L7z WEnni, AEtoREL Y —
WCEBR B0, VT4 v as y TRERTV, FOB
H X CBD [g/mL] (Conditioned Bulk Density) % il &
L7z B, avF4vas vy Zuieid, 7L —FR
BRIl 0 2 l8E L 2255 H 5 AR ST S 2k kg
PR r B L, RO BAEM) REH— IR

SNTBREZ T 5 LR TH 5[32], ARKETIZZ
D7t 2EEL, FHEMOD KIS OFHIRGEZ /5
DT Z LT, B RO IE R I O FHA B
WAEE I N WE ) IZLTWA[33-35]. ERTIE, %
37 L — F2% 100 mm/s O [a§z 3 ¢ Rk E R D (2 [aldz L
B35, Bk EEER (ThE) ISBET 585 %
THFRYEL, EEORET AN F— B EORRIL
B BHEIELRZ[B6le 7L — FELEARDEE %
& A SR &2 HE LB 20 B s bV 27 L TG
HeFnZFRlEL, IhoOESMEZRE) T AV F—
CRARTEENC AL ) RRIEPUE) & L CED2[34]e 1 HHE
7HHOZ AV F— D E2Z IR (Stability Index:
SI) LEF#L, SIA09~1.1 DFFHTHIIE, HiRiFHE
FICE 2B 22T, MBI LEL TS L
WraN5b[36]e £72, 7THHOT ANV F—HIE, FEATRH
P AV ¥ — BFE [mJ] (Basic Flowability Energy) & LT
EFIND,

W2, FHEOa Y71 v 3=y T ELT - 72K
WML, 7= Fz LM ICBH S EE2TV, 6N
o AVF— (L& OBENI 202 mEHKUE) %4
YINVERTHRLEE LT X V¥ — SE [g/m]] (Specific
Energy) & L CHM L7, SE L, IEHNEETICBITS
W RPER O BRI % LS B iR CH 5o

EH1Z, T — FOREEHEE% 100, 70, 40, 10 mm/s
AT ST E 2 b ER (Variable flow rate test) % FZiti
L, 10 mm/s 3 & 0° 100 mm/s TOFRBT AV F— (%10
R PE IS B AR OIPUE) oS, By

Bk Teg &k



8% (Flow Rate Index: FRI) %% L 72[34,35]c FRI 2% 1
WA, BRI TREDSEE ORISR L TR L 72i
BEBZRT,
24 72 MLy b O E ST
SLS 53D 7V ¥ #IC X B ERE TR, BEAEMD
YIMLy bEZNS=FIVCHEEIICERL, KA
%Ltikkﬁ%*#”ﬁ*ﬂ%i%bto BEUXL7Zz7Y > Ly b
&, YUATNVERALZTIVISIZAN, 24 KRR
TRAF U 72 B\ S T L2 i L 72
7YY Ly NOERIZSHRAE (ML204T/00, A b
s MLUER) WCEDHIELA. D [mm] (Diameter
oftablet) BLOE S T [mm] (Thickness of tablet) X, %
AXNVTy 722X =T (F/NHE 0.01 mm, SM-528,
Ty 7) RHWTHNE L7z, $EX OB E F [N]
(Crushing load) &, ®—% 7 VAR (PC-30, FHIH;
T) ZHWVWTHZEL:.
HONF, D, TOZMEZHANT, DITDEq. (2) 2
X ) BIEERRIE TS [MPa] (Tensile Strength) % & H L7z,

TS = 2F/(zDT) 2

B, 3DTUIDEHNC, FEFRIHKE LB &

ZZFII WAREEOYE, Glomk) MEEL | MPa b
NET728 ENB[37]. € 2 TR TIE, 3DCAD T

OFENH (D: 10 mm, T: 3.6 mm) 23T X, F oLl
60N L& L7,

2.5 SEM IC & BTIREIE

AWFFE T L2 FE K ORFIIRB L OER L 7:
7Y v by ORERAREEEBIgT 5700, EAR
BY-HEMSE (SEM, JCM-7000 NeoScope™, HAET) %
iz, #FHzik, 278y ¥ a— % — (DII-29010SCTR
Smart Coater, HAET) Z#HWVTE (Au) I—F 4 ~
7 xRNl 7

26 7U2 bl vy bhOEYESERR

7Yy bLy MRICERINLEY =, BEAR s
O~ k25 74— (HPLC, EXTREMA HPLC System, H
EN S J:V)"’Ebf: E 2 0 ) EZ NB A N ¥
%, EoMHOBEMICER S, 0.45 um @ PTFE 7 4
)V % — (DISMIC®-13HP, %‘ﬁéiféﬁﬂ&) Til# L 72, HPLC
Wt L 72,

TEYNT I 720 %G0BV, BEHE L
T50mM ) Y EERRMTHE (pH4.7) £ X%/ —)L (MeOH)
% 4:1 (viv) TRALZZBERE V72, 5H11d 5C18-AR-
7524 B30mmIDxI50mm, 747 J47X27) 12
1.0 mL/min, % J A 40°C, {EAE 10 uL DT
1T, UV RHZRIC L D 225 nm THIE L7z,

AV RRAY Yy EELUHTE, BEHIC20mM Y ~
FEARME (pH2.5) L X% ) — V% 37 (vv) TRAELL
B E 2. 5HHE 5C18-MS-I1 # 5 & (4.6 mm 1.D.x
150mm, FH# 545 A2) I[ZFE 1.0mL/min, »J A&
£ 40°C, VEAR 20 pL D5 THEM L, 280 nm THih
L7
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2.7 #E R

ﬁ%ﬁk FWMLU-BEME, BT MLy b

ARG 5720, HE X BT (PXRD) B X
m%ﬁﬁﬁ 58t (DSC) % FEhti L72. PXRD Hl%E IS
AR X #7241 (D8 ADVANCE, Bruker AXS) #
WV, 20=5~40°DHiIFA T3y — R RUT L7z,
DSC Ml E 12 13R 2 A 2= 5 (DSC 8000, PerkinElmer)
ZHHAL, ZRER 10mg 27 VI = A8 IZHAL
7o FHEEEE 10°C/min, METEEFPH 25~250°C, #EH
FRPRST TR B A E L7z,

2.8 EWiahEER

EW OB M F T 5720, 45 18 SIE HAREF F
(JP18) (CHEPL L 7278 RVl X D iaHaBRZ £l L 72,
RERIZIE, AR (NTR-6100, EILEYE) 2HW,
BWHBARE UCHEEAK 900 mL 2 L7, REREEI
37+0.5°C, [H¥Z#EEE L 50 rpm & L7ze U Y P Ly MIZ
KT ET B D 5720, AT v L ABOFEHIE
FHY oA —I1ZEL, BB ICE A L Cikk
Ko TN IV 72V 2EAT HRFHIOVTIR
120531, £ ¥ FAZ 2V REHT HEBHIDWTIE 360
S ORER % AT > 720 FHWERI AT 1 mL O FEHE % $RIL
L, 0.45um @ PTEE 7 4 V% — % W Cifi#f%, HPLC
2 &0 SRR EE & g L 7z

3 XBRERBLUEE

31SLSARIDTU > HICLBT7ENT
SRR
EFNVEPELLTCTEINT I/ 722, SLSH
R3ID TV UFICEBETY VLY OB ERES L7
(Table 2) o ERLLMA R ORISR JIT B L
i3 %720, B5MITH L CEEROBRILHIE 21T - 720
[Fully printable | 13 XTHF Y ¥ b Ly F2VKFaZ L 3
JEs8Nh/zZ L %R L, [Partially printable | 1Z§EH]BIE A
HETH SO0, —FOBTHHRERIAT5TH S
T WM RGASR 51722 & %, [Unprintable | (3885
JEDF - FEED B CIZERRROELE Vo 72 E K%
REGASHELT, WA TH o722 & 2R T o
TYMNT IV T2 0% S%EARTHT (FAS V) —
X) IZBWT, FAS-1 ODFEGTHEENT) Y MLy
MIFEFIEL, FTO2FEFLILENTELWVIIETH->
7oo L—H—BRAE (LS) 2Ny FHME (HS) %W
72 FA5-2 B LUV FAS-3 TlE, SEAIRIRE X3 L
eboo, BEFEOThIEL SNz (Fig. 2a), Ih
&, L= =R IS BGE L 72 BERE RS, RIS —
NTHIET)a—F— LML, B OBERRREH»H
LEIX SN TERLAAE»SThIBRETH D, i
ELT, MikOBREREOKENRRMETNORAET
5[38,39]0 —7J7, MARKMHEE (PST) % L& X472 FAS-3
TIRBEH O TSR SN0, S HIREZ B
72 FAS-4 TlX, RIFRMmE LR EZETAHTY V
Ly b3R5 (Fig 2b)s

BIEYE & PST OBIfR%Z X 0 IICHGT 3 5720, 74

X7z



Table 2  Effect of sintering process parameters on the printability of acetaminophen-containing printlets fabricated via

selective laser sintering (SLS) 3D printing. The layer height was fixed at 0.1 mm

Process parameters

Formulation Powder Surface Internal Chamber PRI
Cod W " Laser Scan Speed  Hatch Space Printability
ode Temperature Temperature
(LS, mm/s) (HS, mm)
(PST, °C) (ICT, °C)

FAS5-1 80.4 60.3 80 0.125 Unprintable
FAS5-2 80.4 60.3 70 0.125 Unprintable
FAS5-3 89.5 69.7 74 0.080 Unprintable
FAS5-4 100.2 80.0 80 0.125 Fully printable
FA10-1 90.0 70.2 80 0.125 Unprintable
FA10-2 95.4 75.1 80 0.125 Fully printable
FA10-3 100.2 80.0 80 0.125 Partially printable
FA10-4 105.0 85.0 80 0.125 Unprintable

“Fully printable” indicates that all printlets in the batch were fabricated without defects. “Partially printable” refers to
successful printing with minor issues such as insufficient powder supply in some layers. “Unprintable” means printing
failed due to major defects such as layer shifting, delamination, or powder solidification.

110 v

Fig. 2 Images of acetaminophen-containing printlets (formulation
FAS series, 5% w/w): (a) Printlet fabricated under the FAS-3
condition exhibiting visible layer shifting during sintering,
(b) Printlet fabricated under the FA5-4 condition showing
good printability and mechanical integrity

N7 I 7 VEEY 10%ICHMEEUHFICBNT,
PST 4t % 254 & & 72 FA10-1~FA10-4 Z{ERL L, Z0IF
P OFRISA: (LS = 80 mm/s, HS = 0.125 mm, LH = 0.1 mm)
X FAS-4 LH—& L7zo #5R, Sz gt oz
DIE FA10-2 Th o720 ThE D IKIESEM (FAl0-1) T
3, BEEAI VL) a—F =L 0FEfMIcE-oTTR
MAEL, BRSPS, BITHERIZBWTD
PST MR &S L L—W—WEHC L D BEEEAS D R Y
Ya—MREIZY =y - FETEIEBHEINTY
5[38,39]o &\ PST T TITHERATHICTFEAIN TV
Wi, L—%—REORIW»r D28 Y
Pkt g & ABEAERE & OB K E RBNIEI AT L L
GERTBEEZONSE, TOBERIZED, L—HF—
TRE R I B B S 2O I H SN TIUw L, Zhath —
Vo(KY) xSRI T, HRELT, BEHERESY
a—F—CHfh - THL, HRPORTIRREEREEAR
BPRET D EEZ 51T 5[39,40]0

—) T, Higt (FA10-3 B X U°FA10-4) TiX, #
KOMEERINENT & ) RIS £ CTHAE - W LL, Mk
BAF O —(LR ) I — PARE L Vo 2B D L.
g, BREINEC LD BREEA T T v Z RICEALT
52 EPEREE 2 5N 521,400

D LofEEr» s, EIRNREE (PST) 1XSERIBIEMEITK
EHBR5 2 DERNTH LI EIRENT, BIEHD
M.k, BRIEHITDH 5 Kollidon® VA64 3BT 1P 5L B
R)—=THHI L EERIZEBRLTVAEEEZONS,
—RICZOMDOFE ) v —1&, HT AEBIRE (Tg) ML
THRIEDIE L, BERS2VRAE Z S, Kollidon® VA64 D Tg
38 101°C L E3NTWBD, T T/ 722D
B TgRETT A2 MBS TEY[M41], 2h
77 7 OB MERICE 20D EEZ S
Nb, SOZENS, TEMNT IV 72 vOERIIEL
T, W7 PST 25587 5 W e AVRIE S 72[21,38-41],

3.2 EEAFEF A OBEF A0 FHE & DRI EE{ED

5

SLS X Tix, BRED S B L —H -G X - ThE
FEEINLIDOIE—FIROEN L7280, ERIHEH I W
KIG RS CFRAF L, ERO ADMEE 25, LA
L, Mm#E#YRT LT, FROBKILH T O A
A - IRDOZALDH: U AT REEEA S D, SLS FITBT
RO FRHICIEZ  OBRGEDE D o FRICEE MG
T, AAAICET 285 EEbOThRV21, £2
TARFRETIE, TEMNTI ) 720% 10%aH T 50T
v, SLS IHIEHIZICB U 2 R0 ZLs L UFH
FUFIT BEME 2 Meat L 72

9, VY MLy MERRISHERA L ERRE (DL
T, VYA 7 vk ZBEURL, KRERRARE OREKD

7202, L= —RIFRRESARES L O SEM I &
LILHERISE, FT-4 |2 X 2 By Ay Wi B 1 55 2 9206 L 72

(Table 3, Fig. 3) o

R K OREGAMER R I Y, T T/ 72
~ & Kollidon® VA64 @ Dy, i IZZ 1211 20.2 pm, 46.0 pm
ThY, XL EWZ PRSI N (Fig 32) [27,42],
REHRICHL T, RMEABAE L TY ¥ A 7 vk
RO FE75AT VAR 2 22 LIZ R S e H o 72 (Fig. 3b) o
E 51T, SEM HfRIZBWTH, REARKL YA 701
RO T IRIIE K E R ENDS SN d > 72 (Fig.
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Table 3 Flowability parameters of the physical mixture used in FA10 formulation, measured before and after selective laser

sintering (SLS) 3D printing using a dynamic powder flow tester (FT4). Data are presented as mean+SD (n = 3)

Basic Energy Stability Index  Flow rate index  Specific Energy Conditioned Bulk
Flowability (BFE, mJ) (ShH (FRI) (SE, mJ/g) Density (CBD, g/mL)
Unprocessed powder 146.7+5.4 0.89+0.01 1.15+0.03 4.34+0.12 0.433+0.003
Recycled powder 123.0+10.4 0.96+0.05 1.14+0.06 4.03£0.10 0.399+0.002

“Unprocessed powder” refers to the fresh physical mixture prior to printing, and “recycled powder” refers to the powder

collected after printing.

(a)
30 .
— Acetaminophen

Kollidon VA64
— Yellow iron oxide

25

20

Frequency [%]
O

\

0.1 1 10 100 1000

Particle size [um]

(c) Unprocessed powder (FA10)

(b)
30 ¢
— Unprocessed powder (FA10)
25 Recycled powder (FA10)
< 20 t
)
s 15
% 4
S 10
=
! /
0o L— —_—
0.1 1 10 100 1000

Particle size [um]

(d) Recycled powder (FA10)

Sk

Fig. 3 Evaluation of physical mixtures (FA10 formulation) before and after selective laser sintering (SLS) 3D printing.
(a, b) Particle size distributions of powder samples measured by laser diffraction. (a) Individual original powders
of acetaminophen, Kollidon® VA64, and yellow iron oxide. (b) Physical mixtures of the FA10 formulation before
and after SLS 3D printing. The plots represent mean values (n = 3). (c, d) SEM images of the powder surfaces: (c)
unprocessed powder and (d) recycled powder. “Unprocessed powder” refers to the fresh physical mixture prior to
printing, and “recycled powder” refers to the powder collected after printing
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Fig. 4 Differential scanning calorimetry (DSC) thermograms of
powder samples: unprocessed acetaminophen, unprocessed
Kollidon® VA64, and physical mixtures of the FA10
formulation before (unprocessed powder) and after (recycled
powder) selective laser sintering (SLS) 3D printing
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Table 4 Physical properties and drug content of acetaminophen-
containing printlets (formulation FA10) fabricated using
different Z-plane positions (Z = 10-30) in selective laser
sintering (SLS) 3D printing. Data are presented as mean+SD
(printlet mass: n = 42, printlet hardness: n = 10, drug
content: n = 3)

Acetaminophen dissolved [%]

(¢
~

Z-plane . Printlet Drug content
o Printlet mass [g] .
position hardness [N] [% of theoretical]
Z=30 0.2622+0.0222 138433 102.1+5.43
Z=20 0.2594+0.0200 140+22 101.5+3.77
Z=10 0.2654+0.0202 134433 98.97+2.83

120 r

0 1 1 1 1 1 J
120

Fig. 5 Evaluation of printlets (formulation FA10) fabricated at different Z-plane heights using selective laser sintering
(SLS) 3D printing. (a) 3D CAD model used for stacked fabrication with three layers (Z = 10, 20, and 30 mm),
enabling the production of 126 printlets per batch. (b—d) SEM images of the printlet surfaces obtained from Z =
10 mm (b), Z =20 mm (c), and Z = 30 mm (d). (¢) Cumulative drug dissolution profiles of representative printlets

from each Z-plane (mean+SD, n = 3)
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Table 5 Physical properties of indomethacin-containing printlets (formulation FI120) fabricated under various sintering process conditions using

selective laser sintering (SLS) 3D printing. All samples were fully printable. Data are presented as mean+SD (printlet mass and thickness:

n = 25, printlet hardness: n = 10)

Process parameters

Formulation Code

Printlet Thickness Printlet

Printlet Mass [g]

Laser scan speed Layer height  Electron Laser Density [mm] Hardness [N]
(LS, mm/s) (LH, mm) (ELD, J/mm?)

FI120-1 72 0.2 1.3 0.2553+0.0162 5.142+0.237 52.5+11.5

FI120-2 60 0.2 1.5 0.2836+0.0220 5.527+0.291 73.7£17.0

FI20-3 72 0.15 1.7 0.3089+0.0266 5.842+0.352 74.4+20.9

FI20-4 60 0.15 2.0 0.3146+0.0338 5.844+0.342 75.5+15.8

FI20-5 72 0.1 2.6 0.3666+0.0409 6.703+0.578 114.4432.7
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Fig. 6 Evaluation of drug crystallinity and dissolution behavior of indomethacin-containing printlets
(formulation F120). (a) Powder X-ray diffraction (PXRD) patterns of indomethacin, Kollidon® VA64,
physical mixture (FI20), and printlets fabricated under the FI20-2, FI20-3, FI120-4, and FI20-5
conditions. (b) Drug dissolution profiles of indomethacin, the physical mixture (F120), and printlets
fabricated under the F120-2, FI20-3, F120-4, and FI20-5 conditions (mean+SD, n = 3)

4. 15
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Nomenclature
Tg : Glass transition temperature [°C] F : Crushing load [N]
ICT : Internal Chamber Temperature [°C] TS : Tensile Strength [MPa]
PST : Powder Surface Temperature [°C]
P : Laser Power [W] Subscript
LS : Laser Scan Speed [mm/s] 3DP : 3-Dimensional Printing
LH : Layer Height [mm] SLS : Selective Laser Sintering
HS : Hatching Space [mm] LDSA : Laser Diffraction Spray Analyzer
ELD : Electron Laser Density [J/mm?] SI . Stability Index
CBD : Conditioned Bulk Density [g/mL] FRI  : Flow Rate Index
BFE : Basic Flowability Energy [mJ] SEM : Scanning electron microscope
SE : Specific Energy [ml/g] HPLC : High performance liquid chromatography
D : Diameter of tablet [mm] PXRD : Powder X-ray diffraction
T : Thickness of tablet [mm] DSC : Differential scanning calorimetry
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